- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Freel, Kelle_C (2)
-
Rappé, Michael_S (2)
-
Tucker, Sarah_J (2)
-
Kawelo, A_Hiʻilei (1)
-
Kotubetey, Keliʻiahonui (1)
-
Nigro, Olivia_D (1)
-
Ramfelt, Oscar (1)
-
Rii, Yoshimi_M (1)
-
Winter, Kawika_B (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract SAR86 is one of the most abundant groups of bacteria in the global surface ocean. However, since its discovery over 30 years ago, it has remained recalcitrant to isolation and many details regarding this group are still unknown. Here, we report the cellular characteristics from the first SAR86 isolate brought into culture, Magnimaribacter mokuoloeensis strain HIMB1674, and use its closed genome in concert with over 700 environmental genomes to assess the phylogenomic and functional characteristics of this order-level lineage of marine Gammaproteobacteria. The SAR86 order Magnimaribacterales invests significant genomic resources into the capacity for $$\beta$$-oxidation, which is present in most genomes with high gene copy numbers. This cyclical set of reactions appears to be fed by components of cell membranes that include lipids such as phosphatidylcholine, phosphatidylethanolamine, glycolipids, and sulfolipids. In addition to the widespread capacity to degrade the side chain of steroidal compounds via $$\beta$$-oxidation, several SAR86 sublineages also appear able to fully degrade the steroid polycyclic ring structure as well as other aromatic, polycyclic, and heterocyclic molecules. Read recruitment from publicly available metagenomes reveals that the Magnimaribacterales compose up to 6% of the global surface ocean microbial community. Only a subset of genera drives these high relative abundances, with some more globally dominant and others restricted to specific oceanic regions. This study provides an unprecedented foundation through which to understand this highly abundant yet poorly understood lineage of marine bacteria and charts a path to bring more representatives of this order into laboratory culture.more » « less
-
Tucker, Sarah_J; Rii, Yoshimi_M; Freel, Kelle_C; Kotubetey, Keliʻiahonui; Kawelo, A_Hiʻilei; Winter, Kawika_B; Rappé, Michael_S (, Limnology and Oceanography)Abstract Islands in the tropical Pacific supply elevated nutrients to nearshore waters that enhance phytoplankton biomass and create hotspots of productivity in otherwise nutrient‐poor oceans. Despite the importance of these hotspots in supporting nearshore food webs, the spatial and temporal variability of phytoplankton enhancement and changes in the underlying phytoplankton communities across nearshore to open ocean systems remain poorly understood. In this study, a combination of flow cytometry, pigment analyses, 16S rRNA gene amplicons, and metagenomic sequencing provides a synoptic view of phytoplankton dynamics over a 4‐yr, near‐monthly time series across coastal Kāneʻohe Bay, Hawaiʻi, spanning from an estuarine Indigenous aquaculture system to the adjacent offshore environment. Through comparisons with measurements taken at Station ALOHA located in the oligotrophic North Pacific Subtropical Gyre, we observed a sharp and persistent transition between picocyanobacterial communities, fromSynechococcusclade II abundant in the nearshore toProchlorococcushigh‐light adapted clade II (HLII) proliferating in offshore and open ocean waters. In comparison to immediately adjacent offshore waters and the surrounding open ocean, phytoplankton biomass within Kāneʻohe Bay was dramatically elevated. Members of the phytoplankton community revealed strong seasonal patterns, while nearshore phytoplankton biomass positively correlated with wind speed, rainfall, and wind direction, and not water temperatures. These findings elucidate the spatiotemporal dynamics underlying transitions in ocean biogeochemistry and phytoplankton dynamics across estuarine to open ocean waters in the tropical Pacific and provide a foundation for quantifying deviations from baseline conditions due to ongoing climate change.more » « less
An official website of the United States government
